A and B can do a piece of work in 10 days. B and C can do it in 12 days. A and C can do it in 15 days. How long will A take to do it alone?

A and B can do a piece of work in 10 days. B and C can do it in 12 days. A and C can do it in 15 days. How long will A take to do it alone?
[A]20 days
[B]24 days
[C]30 days
[D]40 days

24 days
(A + B)’s 1 day’s work $latex = \frac{1}{10}&s=1$
(B + C)’s 1 day’s work $latex = \frac{1}{12}&s=1$
(C + A)’s 1 day’s work $latex = \frac{1}{15}&s=1$
On adding,
2(A + B + C)’s 1 day’s work $latex = \frac{1}{10}+\frac{1}{12}+\frac{1}{15} = \frac{6+5+4}{60} = \frac{1}{4}&s=1$
∴ (A + B + C)’s 1 day’s work $latex = \frac{1}{8}&s=1$
∴ A’s 1 day’s work $latex = \frac{1}{8}-\frac{1}{12} = \frac{3-2}{24} = \frac{1}{24}&s=1$
∴ A alone will complete the work in 24 days.
Hence option [B] is correct answer.


3 Comments

  1. Ren

    May 22, 2018 at 10:04 am

    ∴ (A + B + C)’s 1 day’s work =1/8
    How is this possible??

    Reply
  2. Me

    August 17, 2018 at 6:41 pm

    you divide 1/4 by 2

    Reply
  3. Maya jain

    November 9, 2018 at 5:04 pm

    2( A+ B+ C)= 1/4 then (A+ B+ C) = 1/4*2 =1/8.
    So, the answer becomes (A+B+C) = 1/8

    Reply

Leave a Reply

Your email address will not be published. Required fields are marked *